Scroll back to top
Mass moment of inertia | Area moment of inertia (used in Statics!) | ||
---|---|---|---|
Other names | Second moment of area | ||
Description | Determines the torque needed to produce a desired angular rotation about an axis of rotation (resistance to rotation) | Determines the moment needed to produce a desired curvature about an axis(resistance to bending) | |
Equations | | | |
Units | \( length*mass^2 \) | \( length^4 \) | |
Typical Equations | | | |
Courses | TAM 212 | TAM 210, TAM 251 |
Shape | Diagram | MoI about the centroid (centroidal axis) | MoI about the origin |
---|---|---|---|
Rectangle | | \( \bar{I_{x'}} = \frac{1}{12}b h^3 \) \( \bar{I_{y'}} = \frac{1}{12}b^3 h \) \( J_c = \frac{1}{12}bh(b^2+h^2) \) | \( I_x = \frac{1}{3}b h^3 \) \( I_y = \frac{1}{3}b^3 h \) |
Triangle | | \( \bar{I_{x'}} = \frac{1}{36}bh^3 \) | \( I_x = \frac{1}{12}bh^3 \) |
Circle | | \( \bar{I_{x'}} = \bar{I_{y'}} = \frac{1}{4} \pi r^4 \) | \( J_O= \frac{1}{2} \pi r^4 \) |
Semicircle | | \( \bar{I_{x'}} = (\frac{\pi}{8} - \frac{8}{9\pi}) r^4 \) \( \bar{I_{y'}} = \frac{\pi}{8}r^4 \) | \( I_x = I_y = \frac{1}{8} \pi r^4 \) \( J_O = \frac{1}{4} \pi r^4 \) |
Quarter circle | | \( \bar{I_{x'}} = \bar{I_{y'}} = \frac{1}{2}(\frac{\pi}{8} - \frac{8}{9\pi}) r^4 \) | \( I_x = I_y = \frac{1}{16} \pi r^4 \) \( J_O = \frac{1}{8} \pi r^4 \) |
Ellipse | | \( \bar{I_{x'}} = \frac{1}{4} \pi a b^3 \) \( \bar{I_{y'}} = \frac{1}{4} \pi a^3 b \) | \( J_O = \frac{1}{4} \pi ab(a^2+b^2) \) |