Scroll back to top
Shape | Diagram | Equations |
---|---|---|
Rectangle | \( \bar{I_{x'}} = \frac{1}{12}b h^3 \) \( \bar{I_{y'}} = \frac{1}{12}b^3 h \) \( I_x = \frac{1}{3}b h^3 \) \( I_y = \frac{1}{3}b^3 h \) \( J_c = \frac{1}{12}bh(b^2+h^2) \) | |
Triangle | \( \bar{I_{x'}} = \frac{1}{36}bh^3 \) \( I_x = \frac{1}{12}bh^3 \) | |
Circle | \( \bar{I_x} = \bar{I_y} = \frac{1}{4} \pi r^4 \) \( J_O= \frac{1}{2} \pi r^4 \) | |
Semicircle | \( I_x = I_y = \frac{1}{8} \pi r^4 \) \( J_O = \frac{1}{4} \pi r^4 \) | |
Quarter circle | \( I_x = I_y = \frac{1}{16} \pi r^4 \) \( J_O = \frac{1}{8} \pi r^4 \) | |
Ellipse | \( \bar{I_x} = \frac{1}{4} \pi a b^3 \) \( \bar{I_y} = \frac{1}{4} \pi a^3 b \) \( J_O = \frac{1}{4} \pi ab(a^2+b^2) \) |
Mass moment of inertia | Area moment of inertia | |||
---|---|---|---|---|
Other names | First moment of area | Second moment of area | Polar moment of area | |
Description | Determines the torque needed to produce a desired angular rotation about an axis of rotation (resistance to rotation) | Determines the centroid of an area | Determines the moment needed to produce a desired curvature about an axis(resistance to bending) | Determines the torque needed to produce a desired twist a shaft or beam(resistance to torsion) |
Equations | ||||
Units | \( length*mass^2 \) | \( length^3 \) | \( length^4 \) | \( length^4 \) |
Typical Equations | ||||
Courses | TAM 212 | TAM 251 | TAM 210, TAM 251 | TAM 251 |
Heads up! - Extra
Composite beams builds on this content.
Recall that \( \epsilon_x = -\frac{y}{\rho} \) does not depend on the material properties of the beam, and is based only on the assumptions of geometry done so far.