Scroll back to top
Diagram | Max. deflection
\( y_{max} \) | Slope at end
\( \theta \) | Elastic curve
\( y(x) \) |
---|---|---|---|
| \( -\frac{PL^3}{3EI} \) | \( -\frac{PL^2}{2EI} \) | \( \frac{P}{6EI}(x^3-3Lx^2) \) |
| \( -\frac{wL^4}{8EI} \) | \( -\frac{wL^3}{6EI} \) | \( -\frac{w}{24EI}(x^4-4Lx^3+6L^2x^2) \) |
| \( -\frac{ML^2}{2EI} \) | \( -\frac{ML}{EI} \) | \( -\frac{M}{2EI}x^2 \) |
| \( -\frac{5wL^4}{384EI} \) | \( \pm\frac{wL^3}{24EI} \) | \( -\frac{w}{24EI}(x^4-2Lx^3+L^3x) \) |
| \( -\frac{PL^3}{48EI} \) | \( \pm\frac{PL^2}{16EI} \) | For \( 0 \le x \le \frac{L}{2}: \) \( \frac{P}{48EI}(4x^3-3L^2x) \) |
| For \( a>b: \) \( -\frac{Pb(L^2-b^2)^{\frac{3}{2}}}{9\sqrt{3}EIL} \)\( x_m = \sqrt{\frac{L^2-b^2}{3}} \) | \( B: -\frac{Pb(L^2-b^2)}{6EIL} \) \( A: +\frac{Pa(L^2-a^2)}{6EIL} \) | For \( x<a: \) \( \frac{Pb}{6EIL}(x^3-x(L^2-b^2)) \)For \( x=a: \) \( -\frac{Pa^2 b^2}{3EIL} \) |
| \( -\frac{ML^2}{9\sqrt{3}EI} \) \( x_m = \frac{L}{\sqrt{3}} \) | \( A: -\frac{ML}{6EI} \) \( B: +\frac{ML}{3EI} \) | \( \frac{M}{6EIL}(x^3-L^2x) \) |